Search results for " amplitude equations"

showing 2 items of 2 documents

Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion

2016

In this paper the Turing pattern formation mechanism of a two components reaction-diffusion system modeling the Schnakenberg chemical reaction is considered. In Ref. (Madzavamuse et al., J Math Biol 70(4):709–743, 2015) it was shown how the presence of linear cross-diffusion terms favors the destabilization of the constant steady state. We perform the weakly nonlinear multiple scales analysis to derive the equations for the amplitude of the Turing patterns and to show how the cross-diffusion coefficients influence the occurrence of super-critical or sub-critical bifurcations. We present a numerical exploration of far from equilibrium regimes and prove the existence of multistable stationary…

PhysicsSteady stateApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPattern formationSettore MAT/01 - Logica Matematica01 natural sciences010305 fluids & plasmasNonlinear systemActivator-inhibitor kinetics Cross-diffusion Turing instability Amplitude equationsAmplitude0103 physical sciencesReaction–diffusion systemStatistical physics0101 mathematicsConstant (mathematics)Settore MAT/07 - Fisica MatematicaTuringcomputercomputer.programming_languageRicerche di Matematica
researchProduct

Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model

2022

<p style='text-indent:20px;'>We investigate the formation of stationary patterns in the FitzHugh-Nagumo reaction-diffusion system with linear cross-diffusion terms. We focus our analysis on the effects of cross-diffusion on the Turing mechanism. Linear stability analysis indicates that positive values of the inhibitor cross-diffusion enlarge the region in the parameter space where a Turing instability is excited. A sufficiently large cross-diffusion coefficient of the inhibitor removes the requirement imposed by the classical Turing mechanism that the inhibitor must diffuse faster than the activator. In an extended region of the parameter space a new phenomenon occurs, namely the exis…

Cross-diffusion FitzHugh-Nagumo Turing instability out-of-phase patterns amplitude equationsApplied MathematicsDiscrete Mathematics and CombinatoricsSettore MAT/07 - Fisica MatematicaDiscrete and Continuous Dynamical Systems - B
researchProduct